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ABSTRACT
Purpose The aim of this study was to develop a Bayesian
dose individualisation tool for warfarin. This was incorporated into
the freely available software TCIWorks (www.tciworks.info) for
use in the clinic.
Methods All pharmacokinetic and pharmacodynamic (PKPD)
models for warfarin in the medical literature were identified
and evaluated against two warfarin datasets. The model with
the best external validity was used to develop an optimal
design for Bayesian parameter control. The performance of this
design was evaluated using simulation-estimation techniques.
Finally, the model was implemented in TCIWorks.
Results A recently published warfarin KPD model was found
to provide the best fit for the two external datasets. Optimal
sampling days within the first 14 days of therapy were found to
be days 3, 4, 5, 11, 12, 13 and 14. Simulations and parameter
estimations suggested that the design will provide stable
estimates of warfarin clearance and EC50. A single patient
example showed the potential clinical utility of the method in
TCIWorks.
Conclusions A Bayesian dose individualisation tool for warfarin
was developed. Future research to assess the predictive
performance of the tool in warfarin patients is required.

KEY WORDS anticoagulation . optimal design . population
pharmacokinetic-pharmacodynamicmodelling . therapeuticdrug
monitoring . warfarin

ABBREVIATIONS
BSV between-subject variability
CL clearance
CYP cytochrome P450
diag diagonal
EC50 the drug concentration at 1/2 of maximum effect
FIM Fisher information matrix
INR international normalised ratio
J Jacobian matrix
KPD kinetic-pharmacodynamic
MAP maximum a posterior
MTT mean transit time
PCA prothrombin complex activity
PKPD pharmacokinetic-pharmacodynamic
PT prothrombin time
RSE relative standard error
RUV residual unexplained variability
SE standard error
VKORC1 vitamin K epoxide reductase
VPC visual predictive check (external [e] or internal [i])

INTRODUCTION

Warfarin is the most commonly prescribed oral antico-
agulant worldwide. It is a difficult drug to dose
accurately and reliably, with daily maintenance doses
varying by ten-fold among patients (1). Dosing is further
complicated by a narrow therapeutic range, which
requires routine monitoring of warfarin response using
the International Normalised Ratio (INR). If the INR falls
below 2, the patient is at increased risk of clotting, while
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INRs above 4.5 carry a significant risk of major bleeding
events (2–7). In addition, there is a delay between a change
in the dosing regimen and achievement of the steady state
INR, which means that monitoring is often confounded by
non-steady-state conditions. Not surprisingly, warfarin dose
individualisation constitutes a major challenge for clinicians,
with reports suggesting that patients achieve therapeutic
INRs only 50–60% of the time (8–12).

Recent research has revealed that genetic differences in
warfarin metabolism (via the drug metabolising enzyme
CYP2C9) and the recycling of vitamin K (via vitamin K
epoxide reductase (VKORC1)) are a significant source of dose
variability (1,13–20). This has prompted a call for prospective
genetic testing in newly initiated warfarin patients and has
lead to the development of several genotype-guided dosing
algorithms (1,15–17,19,20). While these algorithms incorpo-
rate all known phenotypic and genotypic influences on
warfarin response, they currently only account for 50–60%
of warfarin dose variability (13,17–19). Indeed, large improve-
ments in the ability to predict future doses or in clinical
endpoints, such as time within the therapeutic range, have not
been consistently demonstrated using genotype-guided dosing
compared to traditional methods (see Caraco et al. (16) versus
Anderson et al. (20), for example). In addition, they require
prior knowledge of the patient’s genetic makeup, which is not
routinely available in most clinical settings. Nevertheless,
genotypic methods would be expected to provide a guide to
the likely maintenance dose required for a patient.

The overarching motivation for this research is the belief
that warfarin dose individualisation can be achieved by the
application of Bayesian methodologies without the need for
prospective genetic testing. This should require only routinely
collected INR results. In general, Bayesian methodologies
involve predictions of drug response (or plasma concentra-
tions) in an individual patient, given knowledge of the
underlying pharmacokinetic and pharmacodynamic (PKPD)
model and parameter values from a prior population
combined with response data from an individual patient
(21). This means that as more response data becomes
available, the posterior estimates of the parameters become
more refined and specific to the individual patient (22).
Armed with estimates of the individual patient parameters,
future doses can be accurately predicted.

The aim of this study was to develop a Bayesian dose
individualisation method based on INR. There were five
specific objectives: (1) to identify PKPD models for warfarin
from the literature, (2) to evaluate these models and
determine the best overall model, (3) to develop an optimal
design for Bayesian parameter control, (4) to assess this
design using simulation-estimation techniques, and (5) to
implement the model in TCIWorks (www.tciworks.info)
with a single simulated case to show the practical
translation of this work.

MATERIALS AND METHODS

Identifying PKPD Models for Warfarin

This research was conducted on the premise that published
PKPDmodels for warfarin were intended by the authors to be
used for predictions of anticoagulant response in new clinical
settings. A literature review was conducted using Medline
(1950–2010) and Embase (1947–2010) databases to identify
all published PKPD models for warfarin. MESH terms
(warfarin, anticoagulants, dose-response relationship, interna-
tional normalised ratio, statistical models, biological models,
population, algorithms, pharmacokinetics) and keywords
(modelling, PKPD, pharmacodynamics) were used. Key
review articles were identified and mined for further papers.

Models were included only if they provided sufficient
details to enable simulations from the model.

Model Evaluation and Selection

Published models were evaluated using visual predictive
checks (VPCs). Two types of VPCs are used in this work:
(1) internal VPCs, where the predictions from the model
were compared against the index data that was used to
build the model (VPCi), and (2) external VPCs, where
predictions from the model were compared to an external
test dataset (VPCe). (See Duffull et al. (23) for a similar use of
VPCs.)

Two datasets for external comparison were available. In
the first dataset (O’Reilly data) (24,25), 32 healthy
volunteers aged 21–63 years were given a single 1.5 mg/
kg dose of racemic warfarin orally or by IV injection.
Racemic warfarin plasma concentrations and prothrombin
complex activity (PCA) were measured at 0, 0.5, 1, 1.5, 2,
3, 6, 9, 12, 24, 26, 48, 72, 96, 120 and 144 h after
administration. In total, the dataset provided 251 plasma
warfarin concentrations and 233 PCA measurements. The
second dataset, from the University of Sydney (Sydney
data) (26), included warfarin plasma concentrations for
each enantiomer (R- and S- warfarin) and INR values for
12 healthy male volunteers, aged 18–34 years. Participants
were given a single 25 mg dose of racemic warfarin, and
blood samples were taken before (−48,−24 and 0 h) and at
1, 2, 4, 8, 12, 24, 48, 72, 96, 120, 144 and 168 h after
warfarin administration. INR values were converted to
PCA using a rearrangement of a published conversion
equation (27) (Eq. 1):

INR ¼ aþ ðb»PCAÞ
PCA

ð1Þ

where a=80.65 and b=0.18.
All models were coded in MATLAB (2010a, the Math-

Works, Inc). VPCs were constructed using 1000 simulations
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under the design of the index and test dataset. The 10th, 50th,
and 90th percentiles of the simulated data were compared to
the same percentiles for the index and test data.

A population PKPD model was developed by the authors
(Otago model) using the O’Reilly data (see Appendix 1). An
internal VPC (VPCi) was produced for the O’Reilly data in
order to provide a reference for the VPCes.

Weight-adjusted doses of racemic warfarin (1.5 mg/kg)
used in the O’Reilly study were simulated by sampling from
a vector of the original patient weights in the study
population. Simulations evaluated against the Sydney
dataset assumed a dose of 12.5 mg of S-warfarin. Simulated
plasma concentrations were assumed to be racemic warfa-
rin for comparisons with the O’Reilly data and S-warfarin
for the Sydney data.

The final model selection was based on how well the
model described the external datasets. Additional consider-
ation was given to models developed using large and
diverse population data. The goal was to select the model
with the greatest chance of providing an unbiased prior
model for TCIWorks, the Bayesian dose individualisation
tool.

Optimised Designs for Bayesian Parameter Control

AKPDmodel fromHamberg et al. (28) was selected as the final
warfarin model. Briefly, a KPD model is a simplified PKPD
model, where the pharmacokinetic component is included
implicitly rather than explicitly. No drug concentrations are
measured, and parameter estimates (including PK parameters)
are derived solely from the pharmacodynamic data (29).
Details of the basic KPD model structure have been published
elsewhere (28,29) so will not be reproduced in full here.

The KPD model was entered into MATLAB (2010a, the
MathWorks, Inc). Optimal design calculations were per-
formed at the population mean parameter values (see
Table I) for a single 70-year-old patient given a 10 mg
loading dose of racemic warfarin, followed by 13 days of
5 mg. Values for clearance and EC50 were assumed to be
those associated with wild-type genotypes as per Hamberg
et al. (28). No dosage adjustments were simulated during
this exercise, as the goal was to evaluate the Bayesian
algorithm with the optimal sampling for warfarin INR
monitoring within the first 14 days of therapy. Baseline
INR was fixed at 1, although this would not be a
requirement in the clinic. Age was incorporated into the
model as per Hamberg et al. (28,45):

CLsi ¼ CLq 1þ ð�0:00571»ðAGEi � 71ÞÞð Þ ð2Þ

where CLsi is the individual estimate of clearance for
S-warfarin, and CLθ is the population mean value for
S-warfarin clearance.

Using the KPD model, optimal sampling days for
warfarin INR monitoring within the first 14 days of therapy
were determined. To achieve this, a modified C-optimality
criterion was used. The goal was to find sampling points for
a single patient in which the sum of squared relative
standard error (relative to each parameter value) for the
maximum a posteriori (MAP) information matrix was mini-
mised. The MAP information matrix was constructed in
MATLAB and consisted of two components: the expecta-
tion of the Fisher information matrix of the data driven
likelihood and the information matrix associated with the
prior estimates of parameter values, weighted by between
subject covariance (Ω). This joint information matrix
simplifies to

FIMMAP ¼ JΣ�1J0 þ Ω�1 ð3Þ

where FIMMAP is the MAP Fisher information matrix, J is a
matrix of first partial derivatives of the model with respect
to the parameters, such that

J ¼
@f t1ð Þ
@q1

� � � @f tnð Þ
@q1

..

. . .
. ..

.

@f t1ð Þ
@qn

� � � @f tnð Þ
@qn

2
664

3
775 ð4Þ

Here we use ′ to denote the transpose of the matrix. Σ is
the covariance of the residual error and is given by Σ=σ2

In, where σ
2 is the residual variance and In an n x n identity

matrix.
The standard error of the MAP information matrix

(SEMAP) is given by the square root of the diagonal of the
inverse of the MAP information matrix (Eq. 5).

SE
MAP

¼ diag FIMMAP^�1
� �� �0:5 ð5Þ

The optimality criterion (ΨRSE) was given by the sum of
relative standard error (Eq. 6) so that all parameters are
weighted equally irrespective of their absolute value.

ΨRSE ¼
Xp

i¼1

SEMAPi

qPOPi
ð6Þ

where SEMAPi is the standard error of the MAP information
matrix for the ith parameter, θPOPi is the population
estimates for the ith parameter.

The optimality criterion was linked to an exchange
algorithm for search across the design space (days for which
INR is to be measured). In this algorithm, each element of
the initial design vector was exchanged with a value from a
grid of possible values. If the criterion value was improved,
the new design was accepted. The design space was a unit
grid over a period of 14 days. Three designs were
considered, with 5, 7, and 9 sampling times during the first
two weeks of therapy.
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Design Performance (Simulation-Estimation)

The expected performance of the Bayesian dose individu-
alisation method and the optimal sampling design was
evaluated using a simulation-estimation exercise.

Simulation

One hundred virtual patients were simulated in
MATLAB. For each virtual patient, a single set of
“true” parameter values was simulated from a log

normal distribution with a mean and variance derived
from the published model. Seven parameters were
simulated, including clearance, volume, Emax, gamma,
EC50 and mean-transit times for transit chains 1 and
2, as per the published model (28). Patient age was
included as a covariate on the clearance of S-warfarin
(Eq. 2). The age for each patient was determined by
randomly selecting from a vector of whole numbers
matching the age range in the original study cohort.
Adjustments were also made for latent genetic covariates
on parameter values for clearance and EC50 during the

Table I Summary of the Four Published Warfarin Models Evaluated for This Research

Reference Study details Model Parameter estimates Variance estimates

Pitsui et al. 1993, 2003 (46,53) • n=5, healthy volunteers. PK:1 cpt bolus Vs=11.3 l BSV

• Racemic warfarin 15 mg×1
dose, then 13 days at sub-
therapeutic doses

PD: modified sigmoid Imax Ks=0.027/h Vs=0.0441

C50s=0.298 mg/l Ks=0.0256

Kd=0.123/h C50s=0.2601

Gamma=1.66 Kd=0.0961

Gamma=0.0529

Hamberg et al. 2007 (45) • n=150 total.
• Single dose: n=57 10 mg

PK:
2 cpt w/FO absorption

71 year old
(CYP2C9 wild type)

BSV

with 3 samples at 12,36, 60 h
• Chronic therapy: n=93×1
sample 12–14 h after the dose

PD: inhibitory Emax with 2
parallel transit chains
(6 and 1 compartments)

CLs=0.314 l/h
CLs=0.0961

V1s=13.8 l

V1s=0.0686

V2s=6.59 l

V2s=0.982

Ka=2(/h) fixed

Q=0.131 l/h

Emax=1 (fixed) EC50=0.167

Gamma=0.424 MTT1=0.019

EC50(GG)=4.61 mg/l MTT2=1.04

EC50 (GA)=3.02 mg/l RUV (additive) for INR

EC50 (AA)=2.20 mg/l 0.0325 RUV(additive) for S-warfarin 0.0908

MTT1=11.6 h

MTT2=120 h

Sigma=3.61

Hamberg et al. 2010 (28) • n=196 (model building) and
n=1426 (WARG study)

• KPD: Transit chain model,
with two chains of three
compartments each

CL/*1 allele=0.174 l/h
CL/*2 allele=0.0879 l/h
CL/*3 allele=0.0422 l/h

BSV
CLs=0.0894
V2s=0.0538

• Multidose and single dose data.
• Age range 19–91

• Inhibitory Emax model
for warfarin effect

V=14.3 l
Ka=2/h (fixed)

EC50=0.1156
RUV (additive) for INR

Emax=1 (fixed) 0.04 RUV(additive) for S-warfarin 0.099

Gamma=1.15

EC50/G allele=2.05 mg/l

EC50/A allele=0.96 mg/l

MTT1=28.6 h

MTT2=118.3 h

Yuen et al. 2010 (44) • n=16, healthy male
volunteers of Indian (8)
and Chinese (8) descent

PK:1 cpt with first order absorption
PD: indirect-response, sigmoid (PCA)

CLs(*1/*1 t)=0.276 l/h
CLs(*2 or *3)=0.18 l/h
Vs=10.6 l

BSV
CL=0.011
Ka=0.1318

• Aged 22–50 Ka=0.402 l/h EC50s(H7H7)=0.0222

• Single dose 25 mg racemic
warfarin with samples x 17
over 144 h

Kd=0.0232 (l/h)
Gamma=2.83
EC50s(H7H7)=0.479 mg/l
EC50s(H1H7)=0.288 mg/l
EC50s(H1H1)=0.206 mg/l

RUV(additive) for PCA
6.54 RUV for S-warfarin 0.1122

PK pharmacokinetic, PD pharmacodynamic, cpt compartment, V volume of distribution, CL clearance, C50 and EC50 the plasma concentration at which
warfarin has 50% of full effect, k elimination rate constant, Kd elimination constant for PCA, Ka absorption rate constant, BSV between-subject variability,
RUV random unexplained variability, FO first order, Q inter-compartmental clearance constant, MMT mean transit time
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simulation phase (but not during parameter estimation
below) to account for differences associated with
CYP2C9 and VKORC1 polymorphisms. In each case,
a vector of adjusted mean population parameter values
associated with specific genetic polymorphism was sam-
pled in proportion to their expected occurrence in the
prior population (data taken from Hamberg et al. (28)).
Baseline INR was fixed at 1, since no estimate of the
population variance associated with baseline INR was
available.

Estimation

For each virtual patient,

1. Initial estimates for the individual parameter values
were set to the population mean values (clearance and
EC50 were assigned values associated with wild-type
genotypes for CYP2C9 and VKORC1, respectively.
(Table I). From here, a search for the individual
maximum a posteriori (MAP) values was conducted using
a simulated annealing algorithm (30). The MAP
estimator is given by

bΦq ¼ argmin
~q

�
~y� f t;~q

� �� �
Σ

�1
~y� f t;~q

� �� �0

þ ~q �~mq

� �
Ω�1 ~q �~mq

� �0� ð7Þ

where Φ is the criterion for the MAP estimator, y is
the observed INR value (calculated from the “true”
parameter values with associated error), θ is the
updated posterior parameter value, μ is the popula-
tion mean value for the parameter and f(t,θ) is the
updated predicted value for INR conditioned on the
“new” estimates of the parameters. Parameter values
for V, emax, gamma, MTT1 and MTT2 were fixed at
the population mean value for the simulated anneal-
ing algorithm. The purpose of this was to reduce
computational time and to allow the algorithm to
search exclusively for MAP estimates of CL and
EC50.

2. Each virtual patient was then followed for a period of
14 days. Patient data in the form of INR was made
available as per the optimal, or a previously deter-
mined, empirical design. As new data was made
available, the MAP was minimised to provide updated
posterior estimates of the parameters.

3. Each iteration of the overall simulation algorithm was
defined as each updated posterior estimate. Hence, if
there were seven INR values available over the

duration of treatment, then the overall simulation
algorithm would have seven iterations. At each itera-
tion the updated MAP parameter estimates are
compared to the true parameter values for that virtual
patient.

MAP Estimate Comparisons

The final MAP parameter estimates were compared to the
“true” parameter values (see above) using relative error. For
each iteration, relative error was calculated using the
following equation:

Relative error ¼ qMAPjk � qTRUEj

qTRUEj

ð8Þ

where θMAP is the MAP parameter estimate for the jth
patient at iteration k, and θTRUE is the simulated “true”
parameter estimate for the jth patient.

Application in TCIWorks

The final KPD model was entered into TCIWorks, a freely
available Bayesian dose optimisation software (www.tciworks.
info) developed by one of the authors (SBD) in conjunction
with colleagues at the University of Queensland. The
software uses the Target Concentration Intervention (TCI)
approach to dose individualisation, which is a patient-
focused modification of Therapeutic Drug Monitoring
(TDM) (31).

To illustrate the potential usefulness of the TCIWorks
method in the clinic, INR response data from a single patient
was simulated in MATLAB. The virtual patient was a 70-
year-old female with CYP2C9 *1/*1 genotype and
VKORC1 A/A genotype given a typical induction regimen
of 3 mg racemic warfarin for five days. Simulations were
conducted at the population mean parameter values. The
resulting INR response data was entered into TCIWorks and
the dose and INR predicted for days 1 to 5.

RESULTS

Published PKPD Models

A total of eighteen population PKPD models for warfarin
were identified in the medical literature, dating back to 1969.
Several were developed using simple linear or log-linear direct
effects pharmacodynamic models for the warfarin dose-
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response relationship and were not included in this research
(see (32–38)). Of the remaining models, six did not include
adequate details of parameter estimates or error models to
enable simulation (e.g. (39–43)). The remaining four models
(28,44–46) were included in this research. Details of these
models are presented in Table I.

Model Evaluation and Selection

External visual predictive checks (VPCes) for each
model compared to the O’Reilly and Sydney data are
presented in Figs. 1 and 2. Internal and external visual
predictive checks for the Otago model are also included in
Figs. 1 and 2, respectively, though details of the model
itself are presented in Appendix 1. None of the published
models predicted the O’Reilly dataset well, with the
exception of the Hamberg et al. 2010 model (Fig. 1b).
Three of the four models (as well as the Otago model)
under-predicted anticoagulant response when compared
to the Sydney data. This will be discussed below. The
Pitsui model, by contrast, over-predicted PCA in the first
48 h after dosing (Figs. 1d and 2d).

On balance, the Hamberg et al. 2010 provided a
reasonable fit for both datasets, bearing in mind that the
Otago model was developed from the O’Reilly data (note
that Fig. 1a represents a VPCi, not a VPCe). The model
parameters and error values were also estimated from a
large and diverse (n=1426) population.

Optimised Designs for Bayesian Parameter Control

The optimal sampling days for a single 70-year-old
patient given a 10 mg loading dose of racemic warfarin,
followed by 13 days of 5 mg were found to be days 3,
4, 5 13 and 14 (5 samples); 3, 4, 5, 11, 12 13 and 14 (7
samples); and 3, 4, 5, 9,10,11, 12 13, 14 (9 samples).
Relative standard errors (RSE) for clearance and EC50,
which represents the precision of these parameter
estimates, are presented in Table II. RSE improved,
compared to the prior values, with the addition of five and
seven observed INR values, but no further improvements
were noted with nine samples. The seven-sample design
was selected as the optimal design.

Design Performance (Simulation-Estimation)

The results of the simulation-estimation exercise to
assess the performance of the seven-sample design are
shown in Fig. 3. Only clearance (CL) and EC50 were
estimated, as these were considered the most important
parameters for dose individualisation. For both EC50 and

CL, the initial bias reduced when more data became
available. In addition, the relative error decreased with the
addition of more data for EC50. This was not evident for
CL, suggesting shrinkage towards the prior mean. The
relative error values for CL and EC50 were stable
between 1 and −1, indicating precise MAP parameter
estimates.

Application in TCIWorks

The TCIWorks output screen is presented in Fig. 4. The
INR results based on the prior parameter values, which do
not account for genetic polymorphisms, are much lower
than the observed INR data for a simulated patient with an
A/A VKORC1 genotype. The predicted (individualised)
values for clearance and EC50 were 0.378 l/h and
2.08 mg/l, compared to the simulated (“true”) values of
0.348 l/h and 1.92 mg/l, respectively. The reduced EC50
value predicted by TCIWorks reflects the A/A genotype for
the simulated patient.

DISCUSSION

There is a large body of literature dedicated to
improving INR control through the individualisation of
warfarin dosing. Three principle methods have been
developed: dose refinement tools, dosing algorithms
based on prior patient demographics, and Bayesian
methods.

Dose refinement tools have been found to improve INR
control compared to empirical (trial-and-error) methods
(47–49). However, many of these tools function by simply
fine-tuning the warfarin dose in proportional increments
depending on how far the measured INR is from the target.
They are, therefore, of questionable value for predicting doses
in newly initiated patients or in those not at steady-state (e.g.
recent dose adjustment or initiation of an interacting drug). It
has been suggested that their benefit may derive largely from
the standardisation of empirical warfarin dose adjustment
amongst physicians (11,20). In addition, unlike Bayesian
methods, dose refinement tools are based only on warfarin
response data and, hence, do not take into account the
underlying pharmacokinetic and pharmacodynamic factors
which make the patient an individual.

Several methods for predicting warfarin dose a priori

have also been suggested. These include traditional warfa-
rin nomograms, as well as clinical and genotype-guided
algorithms (as discussed above). While these provide broad
suggestions for initial dosing based on patient characteristics
such as age (50) or genetic information (1,15–17,19,20),
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they provide no guidance for dose adjustment once INR
values become available.

Bayesian methodologies have not been extensively
applied to warfarin dose individualisation (see (40,46)
for examples), and few appear to have been developed
into tools for use in the clinic. One exception is a
Bayesian forecaster developed in the 1980s (37) which is
still available on the internet (51). This tool is under-
pinned by a log-linear model for warfarin dose-response
(34) which assumes a linear relationship between the log
of warfarin plasma concentration and anticoagulation
effect.

Simulations from the published warfarin PKPD models
reviewed in this paper showed a propensity to under-predict
anticoagulant effect when compared to the external datasets
(see Figs. 1 and 2). This was also evident with the Otago
model (Fig. 2a) and has been reported by Hamberg et al. (52)
when evaluating their model against external data. The
exception was the model from Pitsui et al. (46,53) (Figs. 1d
and 2d), which tended to over-predict effect in the initial 48 h
after the dose. These differences may relate to differences in
how anticoagulant response was measured across studies (e.g.
PT (prothrombin time), INR, or PCA). This raises two
important problems, which represent limitations for this

research. First, systematic differences in the measurement of
anticoagulant effect between different labs exist (54) despite
improved standardisation with the introduction of the INR in
the 1980s. This appears to be a particular problem between
labs using the so-called Owren method for PT determination
(e.g. Scandinavian countries) and those using the Quick
method (54). Second, in our research, INR measurements
from the Sydney dataset had to be converted to PCA to allow
comparisons with the published models. The equation used
(Eq. 1) is of unknown provenance, and it is unclear whether it
has been evaluated in terms of accuracy and precision. A
further limitation of this research was the use of external data
collected from healthy, young volunteers to evaluate the
models. The individuals in the two external datasets do not
necessarily represent the typical population of patients who
would be expected to receive warfarin, and, therefore, the
observed anticoagulant effect may be biased. Indeed, this
may have contributed to differences between the anticoagu-
lant effect predicted by the published models and the
observed effect in the external datasets noted in Figs. 1 and 2.

To our knowledge, this is the first published research to
explore the application of optimal design methodologies to
warfarin dose individualisation. Our findings suggest that a
cluster of INR samples in the first few days of therapy,

Fig. 1 Visual predictive checks
for simulated data from the
models (dashed lines) against the
O’Reilly data (solid line). Models:
(A) Otago model (Appendix 1),
(B) Hamberg et al. 2010 (28),
(C) Hamberg et al. 2007 (45),
(D) Pitsui et al. 1993, 2003
(46,53), (E) Yuen et al. 2010
(44). Note that A is a VPCi,
while the others are VPCes.
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followed by another cluster in a week’s time, will optimise
the estimates of parameter values and, hence, enable
accurate dose prediction in many patients within the
setting of Bayesian dose individualisation. The utility of
this finding in clinical practice is unclear. For example,
our method did not find any optimal INR sampling
points in the first two days of therapy because the
baseline INR was fixed at 1. In clinical practice, a
baseline INR is almost always recommended.

For a warfarin dose individualisation tool to be useful
clinically, it should be freely accessible and account for the
underlying pharmacokinetic and pharmacodynamic factors
that make each patient an individual. Ideally, this would be
accomplished without the need for additional genetic
testing. This research has laid the foundations for such a
method. Unlike many dose individualisation tools devel-
oped for warfarin, our method has used a prior model
developed from a large and diverse population. The
TCIWorks tool with the warfarin model can be down-
loaded from www.tciworks.info.

CONCLUSION

This paper has described the development of a Bayesian
dose individualisation tool for warfarin. This included the
evaluation of five population models for the dose response
relationship of warfarin, development and assessment of an
optimal design for Bayesian parameter estimation, and
illustration of a single patient example in TCIWorks.

Table II Relative Standard Errors for Clearance and EC50 for 3 INR
Sampling Designs

Parameters Relative standard error (%)

Prior 5 INRs 7 INRs 9 INRs

CL (l/kg) 122 43 28 27

EC50 (mg/l) 83 37 25 25

CL clearance, EC50 the plasma concentration at which warfarin has 50%
of full effect, Relative standard error = SEj/θj*100

Fig. 2 External visual predictive
checks (VPCe) of simulated
data from the models (dashed
line) against the Sydney
data (solid line). Models:
(A) Otago model (Appendix 1),
(B) Hamberg et al. 2010 (28),
(C) Hamberg et al. 2007 (45),
(D) Pitsui et al. 1993, 2003
(46,53), (E) Yuen et al. 2010 (44).
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Future research to assess the predictive performance of the
tool in warfarin patients is required.
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APPENDIX 1: THE OTAGO WARFARIN PKPD
MODEL

Methods

PKPD Modelling

A warfarin PKPD model was developed using data from the
O’Reilly dataset. Population PK analysis was carried out with
NONMEM VI using the first-order conditional estimation
with interaction (FOCEI). One- and two-compartment
pharmacokinetic models with first-order absorption were
fitted to the warfarin concentration data. An absorption lag

Fig. 4 Screen-shot from TCIWorks for a simulated patient with CYP2C9 *1/*1 and VKORC1 A/A genotypes. The blue (upper) line represents the
estimated INR, the red (lower) line the prior predictions, and the pink dots the simulated (i.e. "real") INR values.
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Fig. 3 Relative error for
estimations of clearance and
EC50 from the simulation-
estimation exercise.
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time (tlag) was also considered to help describe the apparent
absorption delay of warfarin. Total body weight, sex and age
were considered as covariates. These were retained in the
model if inclusion decreased the objective function value by
3.84 or more (χ2, p≤0.05, d.f.=1). Model discrimination and
covariate inclusion were also assessed using graphical
goodness-of-fit analysis. The between-subject variability was
assumed to be log-normally distributed, with a mean of zero
and a variance of ω2. Residual error was modelled using a
combined additive and proportional error model.

Once the best PK model had been identified, a simulta-
neous PKPDmodel was developed. Graphical inspection of a
PCA versus time plot overlayed on a concentration versus time
plot suggested a considerable delay between warfarin
response and dose. Therefore, only delayed effects models,
such as effect compartment and inhibitory turnover (Imax)
models, were considered. Candidate PKPD models were
evaluated by comparison of the objective function values and
by visual inspection of visual predictive checks (VPCs).

Internal and External Model Evaluation

The model was evaluated by simulating 1000 patients
under the model and plotting the 10th, 50th, and 90th
percentiles of the simulated PCA values. This was com-
pared to the same percentiles from the O’Reilly dataset
(VPCi) and the University of Sydney (VPCe).

Results

PKPD Modelling (The Otago Model)

Parameter and error model estimates for the final PKPD
model are presented in Table III. A one-compartment
pharmacokinetic model with first-order absorption and tlag
provided the best fit for the data. Visual inspection of
covariate plots suggested a relationship between CL, V and
weight. A model for weight, standardised to 70 kg, was
applied to clearance and volume. An allometric scaling
function was also applied to clearance. The final model for
clearance is given by

CL ¼ qCL »
wt

70

� �0:75
ð1Þ

and for volume by

V ¼ qV » wt

70

� �
ð2Þ

An inhibitory turnover model provided the best fit for the
pharmacodynamic (PCA) data (see Eq. 3).

dPCA
t

¼ Ratein»ICð Þ � kout»PCA

IC ¼ 1� IMAX»Cpð Þ
EC50�Cpð Þ

ð3Þ

where Ratein is the zero-order production rate for PCA, Kout is
PCA elimination rate constant, Imax is the maximum
inhibition of PCA, Cp is the plasma concentration (of warfarin),
and EC50 is warfarin plasma concentration at 1/2 Imax.

Internal and External Evaluation of the Otago Model

An internal visual predictive check (VPCi) for warfarin
response compared to the O’Reilly dataset is presented in
the main body of the text (Fig. 1a). The plot suggests good
model performance. An external evaluation (VPCe) of the
model against the Sydney dataset is presented in the main
body of the text (Fig. 2a). The model appears to under-
predict anticoagulant response somewhat. This is discussed
further in the main body of the paper.
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